A Note on Heat Kernel Estimates for Second-order Elliptic Operators

نویسندگان

  • Seick Kim
  • SEICK KIM
چکیده

We study fundamental solutions to second order parabolic systems of divergence type with time independent coefficients, and give another proof of a result by Auscher, McIntosh and Tchamitchian on the Gaussian bounds for the heat kernels of second order elliptic operators in divergence form with complex bounded measurable coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Estimates for Fundamental Solutions of Second Order Parabolic Systems with Time-independent Coefficients

Abstract. Auscher, McIntosh and Tchamitchian studied the heat kernels of second order elliptic operators in divergence form with complex bounded measurable coefficients on Rn. In particular, in the case when n = 2 they obtained Gaussian upper bound estimates for the heat kernel without imposing further assumption on the coefficients. We study the fundamental solutions of the systems of second o...

متن کامل

Symmetric Jump Processes and their Heat Kernel Estimates

We survey the recent development of the DeGiorgi-Nash-Moser-Aronson type theory for a class of symmetric jump processes (or equivalently, a class of symmetric integro-differential operators). We focus on the sharp two-sided estimates for the transition density functions (or heat kernels) of the processes, a priori Hölder estimate and parabolic Harnack inequalities for their parabolic functions....

متن کامل

[hal-00830563, v1] Heat Kernel Bounds for Elliptic Partial Differential Operators in Divergence Form with Robin-Type Boundary Conditions

The principal aim of this short note is to extend a recent result on Gaussian heat kernel bounds for self-adjoint L2(Ω; dnx)-realizations, n ∈ N, n > 2, of divergence form elliptic partial differential expressions L with (nonlocal) Robin-type boundary conditions in bounded Lipschitz domains Ω ⊂ Rn, where

متن کامل

The Solution of the Kato Problem for Divergence Form Elliptic Operators with Gaussian Heat Kernel Bounds

We solve the Kato problem for divergence form elliptic operators whose heat kernels satisfy a pointwise Gaussian upper bound. More precisely, given the Gaussian hypothesis, we establish that the domain of the square root of a complex uniformly elliptic operator L = −div(A∇) with bounded measurable coefficients in Rn is the Sobolev space H1(Rn) in any dimension with the estimate ‖ √ Lf‖2 ∼ ‖∇f‖2...

متن کامل

On the Principal Eigenfunction of Positive Elliptic Differential Operators and the Prescription of Q-curvature on Closed Riemannian Manifolds

In this note we establish the large time limit non-negativity of the heat kernel for a class of elliptic differential operators on closed, Riemannian manifolds, and apply this result to a problem from conformal differential geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004